Jacob Lurie : Higher topos theory; catégories topologiques et ensembles simpliciaux

HENOSOPHIA τοποσοφια μαθεσις υνι√ερσαλις οντοποσοφια

J’ai déjà commencé l’étude de ce livre prodigieux, voir:

https://meditationesdeprimaphilosophia.wordpress.com/2015/08/27/preface-de-higher-topos-theory-n-champs-n-stacks/

https://mathesismessianisme.wordpress.com/2015/09/04/higher-topos-theory-des-n-categories-aux-∞n-categories/

https://mathesisuniversalis.wordpress.com/tag/higher-topos-theory-2/

Le livre “Higher topos theory” se trouve facilement sur Internet, par exemple ici:

http://www.math.harvard.edu/~lurie/papers/highertopoi.pdf

À partir de la page 6 du chapitre 1 du livre (page 24 sur 949 du fichier .pdf) Jacob Lurie passe en revue plusieurs cadres possibles pour l’étude des ∞-catégories à commencer par le cadre es catégories enrichies puisqu’une n-catégorie peut être considérée comme enrichie sur la catégorie des (n-1)-catégories, seulement ceci requiert que l’associativité de la composition des flèches soit définie strictement , à une égalité stricte près et non pas à un isomorphisme près, de façon plus “faible” ou “relâchée”, comme c’est le cas dans la réalité, ce qui réclamerait de considérer la collection des (n-1)-catégories comme un en-catégorie, et non pas comme une catégorie, bref la définition des n-catégories fait appel aux n-catégories! Ce qui signifie que cette approche, dite “approche…

View original post 335 more words

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s